UBISOFT

Automated Debug & Profiling

«F5»

FOR ABETTER
EXPERIENCE

Thanks Thomas and the ASE committee for the opportunity to present what we do
in such a prestigious conference.

In today’s talk, I'll first present what AAA videos games are and, roughly, how they
are built. Then, we’ll embark on how we are leveraging recent research —and try to
contribute ourselves — on various level of our debugging and profiling pipeline.

At each stage, such as bug prevention or tests-recommendations, I'll show which
papers inspired us and how we had to tweak the original ideas, so it applies to
video-games.

MODERN
AAA GAMES

When we talk about games, there are two kind of perceptions, people who think
about the first Formula 1 and people who are playing current gen games. So, we are
all on the same page, here’s a video of the kind of games Ubisoft produces.

Ubisoft produces large open-worlds where they are no limit to the explorations and
players are free to do whatever they desire in this simulated environment.

// Video in the blog-post at laforge.ubisoft.com

AAA GAMES

~16k EMPLOYEES . TECH ARCHITECT / ARS

S B

20 + Offices = DEBUG & PROFILE AAA GAMES

B

-

Ubisoft produces AAA games and have around 16 thousand employees scattered
across 20 offices.

For myself, | wear two hats at Ubisoft. On one hand, | am a technical architect for
the technology group where | lead the devs related to debug and profiling at the
scale of the compagnie. On the other hand, | am a research scientist for La Forge
(Ubisoft Research Lab) where | lead the research roadmap on Software Engineering
& Productivity.

D

MAKING AAA GAMES

FROMIDEATO

From idea to completion, we first begin the creation of a video game by the
breakthrough phase where very few people are involved. Usually, all the different
skillsets to make a video games are present: creatives, animators, devs, artists and

sounds engineers.

FROMIDEA TO

EIEiREaEdd

TETRTTRNRT

] T e

,‘,—‘

Then, we engage the conception phase where we ramp up peoples and skills to
produce the game. They must validate that the game is indeed fun to play by

exercising some of the game mechanics.

FROMIDEA TO

CONCEPTION

In preproduction, the teams are scale up again in order to push further the
exploration of the creative ideas.

FROMIDEA TO

CONCEPTION

PRODUCTION

Finally, in production, teams are reaching max capacities. Producing a AAA games
take hundreds of people.

FROMIDEATO

L

It takes so many people because we are, in the end, building a world simulation, where we
have to simulate the vegetation, the animals, the weather, the architecture, the economy,
religion, crime, politic, gameplay, characters and then, and top of it all, the stories.

The simulation is not accurate because the game have to be fun to play —if | can
only sprint for 15 seconds as | my current shape would allow — it won’t be so fun. So
it’s a fun world-simulations. It can, in some context be even more challenging to
build than an accurate one as you have to be creative about the laws of nature and
physics you want to modify.

STATS PER GAME

X00K CODE FILES

X0K COMMITS

HUNDREDS OF PEOPLE

MILLIONS OF PLAYER

XXM$ OF BUDGET

In the end, a AAA game is hundreds of thousands of files, tens of thousands of
commits, hundreds of people and millions of players. It takes tens of millions of
dollars to produce. You can think of AAA games as the blockbusters of the video
game industry.

10

COMPLETE FRAME

D =
X
://www.adriancourreges.c

Let’s get a technical about what’s happening on screen when you play. Here’s a
complete frame rendered by a game.

11

NORMAL MAP 10%

To make it there, there are a lot of steps. First, you load the map. Here’s what it
looks like at 10%.

12

40%

NORMAL MAP 40%

13

\'1'

i
—
|
—

i

e

Then 100%

NORMAL MAP 100%

14

We carry on by loading the shadows,

SHADOWS

15

Nippdanaan

Computing the occlusions,

OCCLUSIONS

16

Lights,

www.adriancourreges.com/blog/2015/03/10/deus-ex-human-revolution-

LIGHTS

17

TEXTURES

And finally, we load the textures.

This is very expedited and a few dozens additional steps are required in reality.

18

Frame Rendering Timeline

M NormalMap ™ Shadow Map SSAO mlightMap ™ Scene Bloom FXAA Color Correction ul

* 60fps = 16 milliseconds per frame
» 30fps = 33 milliseconds per frame
« No gameplay mechanics / physics / online / ...

So all of this to render one unique frame. If you are playing on PC, an acceptable frame rate
—or the number of frame you want to be displaying per second —is 60 fps. On console it’s
30 fps.

It means you have to be able to output a frame every 16 ms on PC and every 33 ms
on console. It’s already challenging but, in addition of the rendering, you still didn’t
do any gameplay mechanics / physics computations / online calls and everything
that makes the game.

19

PS4

XBOX
@ - PC B . + .:.
CPP WII

On the pipeline side of things, we could think that a bunch of devs are writing tons
of cpp and we compile it for our different platforms and done, you got a game. It
used to be somewhat this way, but with the advent of modern AAA games and
games as a service, where the games are receiving a lot of updates after lunch, we
had to adapt.

20

B

First, CPP progs are writing cpp that is saved into a perforce repository

21

C++
CPP g CoDE SOUND DATA

But to make a game, you also need sound and data.

22

>
=

This sound and data assets are produced by sound engineers, animators and artists.

23

C_XXXXX_S_XXXXX_D_XXXXX
e+
CPP g CODE SOUND

For us, a game version is not your typical semantic versioning but a combination of
versions from code, data, and sound.

24

]

v
(g
+
-+
<«

N FAY n
\V4

PP Bt coo: [l souno

#

Artists, sound engineers and animators require tools to be able to perform their
work. We buy some of them and we make the ones that are custom to our games

ourselves. Most of these tools are coded in csharp and versioned in our
repositories.

25

These tools are then distributed to artists, sound engineers and animators

26

Games now are online and require a server to run. A little known fact is that most of
the code between the server and the client is actually the same because you want
to make sure you are running the exact same physics engine on both sides.

27

=
CODE

And ... it’s not done yet, games as a service are supported by a lot of extra-
functionalities such as friends lists, user generated content, achievements, loots
and more that have to be created by yet another breed of programmers. These

programmers are online programmers and create web-services that supports the
game.

28

Code Change
Created

Eay
=

Code Base
Updated

HUMAN
Suggests Patch

Review

Change Visible
to Others

All of this is supported by a classic contribution pipeline.

29

Code Change

Created

Code Base
Updated

HUMAN
Suggests Patc!

Review

Change Visible
to Others

In which we try to distillate and adapt recent research ideas published in various SE

conferences such as ASE, ISCE, ICSME, ICPC, MSR, SANER, ...

30

COLLABS

UBISOFT

LA FORGE

NOLOGY GROUP | %5,‘ POLYTECHNIQUE
r ./ MONTREAL

Before we go on, | want to emphasize that this is not a one man show and what will be
presented today is the work of many teams internally at LaForge and the Technology

Group. We are also actively contributing with several universities on open research subject.

Another collaboration we have is with the Mozilla Foundation. With them, we are
exchanging code, ideas and skills so we can build a better developer experiences at
both companies.

31

D

BUG INTRO. PREVENTION

32

SZZ Revisited: Verifying When Changes Induce Fixes

Chadd Williams

Pacific University

2043 College Way
Forest Grove, OR 97116
chadd@pacificu.edu

ABSTRACT

Automatically identifving commits that induce fixes is an
important task, as it enables researchers to gquickly and effi-
ciently validate many tvpes of software engineering analyses,
such as software metrics or models for predicting faulty com-
ponents. Previous work on 52Z, an algorithm designed by
Sliwer=zki ot al and imoroved uson by Kim et al. orovides a

Jaime Spacco
Colgate University
13 Oak Dr
i Hamilton, NY, 13346
jspacco@mail.colgate.edu

SZZ is currently the best available algorithm for automat-
commits. The goal of the SZZ
algorithm is Arst to identify the lines modified in a bug-

ically identifying fix-induci

fixing commit, and then to identify the fo-mnducing change

immediately prior to each line of the bug ng comnmit. A
najor remaining open question regarding the SZZ algorithm

15 whether the lines identified as fix-inducing by 52% are ac-

A lot of talks during this conference have explained before what SZZ is and how it
works, let’s dive into it for the last time this week...

During the software creation process, commits are created, bugs are found and
fixed. When a bug is fixed, usually, the developer usually describes it in the commit-
message. Using NLP, we can then categorize the commit as a fix-commit and
perform a blame operation on it to discover the bug introducing commit.

One of the first modification we’ve done to the algorithm is that we do not rely on
NLP to say if a given commit is a fix-commit. See, we are using JIRA as a ticket
management system and it is mandatory and enforced to link your commits to the
bugs you are fixing. There’s no guessing we know what the type of the modification
is: maintenance, preventive maintenance, features, chore and so on. Of course, the
JIRAs could be misclassified, and they sometime are, but overall, we achieve a
higher level of confidence this way.

34

IEEE TRANSACTIONS ONM SOFTWARE ENGINEERING, WOL 33, NO. 11, NOVEMBER 2007 725

Change Distilling: Tree Differencing for Fine-
Grained Source Code Change Extraction

Beat Fluri, Student Member, IEEE, Michael Wiirsch, Student Member, |IEEE,
Martin Pinzger, Member, IEEE, and Harald C. Gall, Member, IEEE

Abstract—A key issue in software evolution analysis is the identification of particular changes that occur across several versions of a
program. We present change distillimg, a ree differencing algorithm for fine-grained source code change extraction. For that, we have
improved the existing algorithm by Chawathe at al. for extracting changes in hierarchically structured data [8). Our algorithm extracts
changes by finding both a match between the nodes of the compared two absiract syntax trees and a minimum edit script that can
transform one tree into the other given the computed matching. As a result, we can identify fine-grained change types between
program versions according to our taxonomy of source code changes. We evaluated our change distilling algorithm with a benchmark
that we developed, which consisis of 1,064 manually classified changes in 219 revisions of eight methods from three different cpen
source projects. We achieved significant improvements in extracting types of source code changes: Our algorithm approximates the
minimum edit seript 45 percent better than the original change extraction approach by Chawathe et al. We are able to find all occurring
I;szges and a&nost reach the minimum om'bmrrmng edr: scnpt that is, we reach a mean absolute pemerﬂag&erma’ of 34 peroem

Another paper that influences us a lot is this one by Fluri et al published more than
12 years ago in TSE. This paper describes how to extract fine-grained changes from
two ASTs.

35

— “Best Match Te. ~

"(a=b)" “printin("foo");" T~ . "la>b)" “printin(*foa");"
:i :i N
-------------------------------- I
,1' First Match
,f.

"printin(“foobar"),"

The way it works is that is by comparing AST node by their values, of course, but
also the similarity of their subtrees. We use this at a lot of places in our pipelines
but, one of them is right here when we try to understand bug introducing changes.
We analyze the changes to be able to say, we a higher degree of certainty than
using git blame only, that a commit did introduced a defect.

36

Introduction

rary. It can build a

yntax tree as the source file

Intreduction

« s s s

Robust enaugh to pros
Dependency-free so tt
Language Bindings P Y

embedded in any application

nce of synta

n pure C)

Available Parsers
Talks on Tree-sitter Language Bindings

Underlying Research There are currently bindings t

hat allow Tree-sitter to be used from the following languages:

Using Parsers = Rust

http://tree-sitter.github.io/tree-sitter/

To extract ASTs from code-changes we use tree-sitter, an open-source library, that

handles a lot of languages including cpp, csharp, typescript, python and more. We
did a few contributions to it and our collaborators at Mozilla significantly enhanced
the cpp support.

A Large-Scale Empirical Study of
Just-in-Time Quality Assurance

Yasutaka Kamei, Member, |IEEE, Emad Shihab, Bram Adams, Member, IEEE,
Ahmed E. Hassan, Member, IEEE, Audris Mockus, Member, IEEE, Anand Sinha, and
MNaoyasu Ubayashi, Member, IEEE

Abstract—Dalect prediction madels are a well-known technigue for identifying defect-prona files or packages such thal practitioners
can allacate their quality assurance efforts (e.g., lesting and code reviews). However, once the critical files or packages have baen
kdentifled, devalopears still need to spend considerable time drilling down to the functions or even code snippets that should be reviewed
or lested. This makes the approach too time consuming and impractical for large software systems. Instead, we consider defect
prediction models that focus on idantifying defect-prone (risky”) software changes instead of files or packages. We refer to this type of
quality assurance activity as “Just-In-Time Cuality Assurance,” because developers can raview and test these risky changes while they
are still fragh in their minds {l.e.. al check-in time), To bulld a change sk model, we use a wide range of factors based on the
characteristics of a software change, such as the number of added lines, and developar experiance. A large-scale study of gix opan
source and five commercial projects from multiple domains shows that our models can predict whether or not a change will lead to a

A classical use-case of detecting bug-introducing commit, regardless of the
technique, is to build a classifier that can detect them. The field of research when
we try to predict them at the commit-level, in opposition to release level, is just-in-
time defect introduction prediction. One of the papers that we, and a lot of others,
are guided by is this one by Yasutaka et al.

38

- NS - NDEV
- ND - AGE
- NF - NUC
- Entropy - EXP
- LA - REXP
- LD - SEXP
- LT

To build the classifier we mine and then use metrics that describe the bug-
introducing commits. Classical metrics that are described in this paper include
number of systems, number of directories, number of files, entropy of the changes,
line added, line deleted, line total, number of devs that touched the files, age of the
files, unique changes, experience, recent experience and, subsystem experience.

39

- ReEXP - TSinceMinor

- ReREXP - TSinceMajor

- ReSEXP - TSinceCodeFreeze
- ReEXPAsDev - TimeOfDay

- ReREXPAsDev - DiffAllocOnStack
- ReSEXPAsDev - DiffAlocOnHeap

- File Stability - DiffCondAlloc

- SS Stability - DiffLoopAlloc

- TTMinor

- TTMajor

We experimented a lot with this, across dozens of AAA games and dozens of
internal tools and found out that a lot of other metrics are yielding significant
added accuracy.

For instance, the experiences of the assigned reviewer as reviewer and as developer
weight a lot. We also have the file stability, the subsystem stability, the times since
and to the last and next minor and majors’ releases date. We are also looking at the
allocation done on the heap, and the stack. We also do that on loops and behind
conditional branches.

We compute all of this metrics based on the fine-grained changes mined on the AST
using visitors that compute, or estimate in the case of allocations, the values of the
metrics.

Then, we train a classifier on this. You can do linear regression, trees or boosted
trees or even go deep-learning on this. Currently, we are using xGBoost.

40

A Unified Approach to Interpreting Model

Predictions
Scott M. Lundberg Su-In Lee
Paul G. Allen School of Computer Science Paul G. Allen School of Computer Science
University of Washington Department of Genome Sciences
Seattle, WA 98105 University of Washington
slundi@cs.washington.edu Seattle, WA 98105

suinlealcs.washington.edu

Abstract

Understanding why a model makes a certain prediction can be as crucial as the
prediction’s accuracv in manv applications. However. the highest accuracy for laree

This paper, published at NIPS introduced the SHAP values and changes the game for
us. SHAP values gives an unified approach to interpreting a model. In other words,

for each prediction, you can have the weight of each metric and see how it impacts
a given prediction.

41

Clever Commit Contactus: '

Risk factor: 15.11% Welcome to Clever Commit!

A » Onboarding

U | l6 1

<
¢ Sort by force
l Tests Lines Added Reviewers’ Number of devs Line Removed Reviewers' Own Subsystem Reviewers' Own Experience
Development per file set Experience as Experience Subsystem Number of Files Test Requests.
Experience Reviewer Review
Experience
Tigs svaiistie @ Tips susisie @ Tigs avsisbie ® il R
22.16% 15.06% 13.95% 11.88% 7.69% 6.54% 4.83% 3.99% 3.63% & =
0.59% 0.59%
Reviewers' Own Recent Warnings Reviewers' Reviewers' Number of Files Test Requests Number of Total Reviewers. ;
Subsystem Experience Recent Review Recent Directories - - g orent ther o getines ontheme
Development Experience Development
Experience Experience 3208k
Tigs avaisble @ Tips aviatie ® Tips svaiatie @
2.95% 1.68% 1.32% 1.02% 0.71% 0.59% 0.59% 0.37% 0.29%
Number of Approver's Commit Time Approver's Commit Hour Approver's Approver Total Approvers
Subsystems Development Subsystem Recent Subsystem
Experience Approval Development Development
Experience Experience Experience
0.22% 0.18% 0.13% 0.06% 0.04% 0.04% 0.02% 0.02% 0.01%
Reviewers' Reviewers'
Approver's Recent Review Recent
'3 Recent Approval Experience Development
Experience Experience
sistie ® il

42

We built a tool around the classifier and the SHAP values that developers see when
they are preparing their commit; before the commit is sent to the code repository.
In this tool, we see all the feature and their weight, either good or bad, towards the
riskiness of introducing a new defect shown in the top-left corner.

42

Clever Commit Contactus: ' [

L.

Risk factor: 7.32% Reviewers' Development Experience

Experience
LR [| il] 29.44%
3 |
R Tests. Lines Added Number of devs Line Removed
perfile set
Experi
20.44% | 17.55% + 12.05% t 8.48% ¥ 6.41% ¥ 529

Own Recent
Experience

Number of Files

082% & 0.78% %

181% &
ConmitTime: | | Mumberct Approvers commitbtour | | Approvers Approvers Approvers pprover To Approves
Directoris Dareopmert Erpernce s Sotepia Recant Sebwetem
Experi Approver Approval Development Development
Experi Experience P
0.28% t 021% $ 0.15% t 0.1% 1t 005% % 003% & 0.03% t 0.02% 0.01%
A
B Recent Approw
Exper

Then, within the tool, developers can tweak their commits by selecting suggested
reviewers. The suggestions are based on the amount of contributions, or code
ownership, of the region of code modified by the commit at hand. We also offer
simulations that modifies the number of lines of code, the complexity and so on. At
each simulation, the classifier re-classifies the commit as if the simulations were
real and gives a feedback, in form of arrows, to the developers so they know how
their simulation impacted the riskiness.

43

Traceabilit

Jan 2019 Feb 2018 Mar 2019 Apr 2013 May 2019

Another aspect that we found to be of crucial importance when applying this
research in an industrial setting is traceability. In addition to be able to explain a
single prediction, you need to be able to see how the classifications are performing
over time. We built reporting for this that are accessible to anyone. One of them
show the actual bug introduction rate for a given project, in red, and the predicted
bug introduction rate in blue.

At the beginning, the lines are following each other very closely but we can see a
big difference at the end. This difference is explained by the fact that the bugs are
there, they were introduced but they are not found yet.

44

o
o

o
o

Bug introduction Rate
o
*

o
&

WWM

Jan 2018 Mar 2018 May 2018 Jul 2018 Sep 2018 Moy 2018

We can be sure of this by doing classification for long enough. As you can see, the
prediction and the reality lines are following each other in the long run.

45

Traceabilit

smgn 0 | dsasrs

3073518

iz
@

3822068

2022635

3513028

2501441

Still, on traceability, at the commit level, when we classify a commit to be a bug-fix
or a bug introducing commit, we built a commit-history graph that developers can
explore to be reassured in the classifications. Here, we focus on a given commit and
all the commits that modified it afterwards. We also see the jiras that these
commits are linked to.

46

Bug by probability range - Bug by probability range
Clever Probability Range (%) Bugs Commits Effective bug ratio
0-10 T 482 145%
10-20 9 275 3.27%
20-30 14 106 13.21%
a0-40 24 66 36.26%
40-50 38 56 67.86%
50-60 49 S 85.96%
B60-70 45 45 100.00%
J0-80 44 44 100.00%
80-90 15 15 100.00%

We also found that interpreting the riskiness of a commit to introduce a defect was
not trivial for our engineers and managers. In our reporting, we can see, over-time
the actual performances of each range of prediction. Here, we have a 36% effective
bug ratio or true positives when the riskiness is between 30% and 40%. Above 60%
the true-positive rate is 100%.

47

2019-04-15

2019-04-15

2019-04-12

2019-04-12

2019-04-12

2019-04-11

2019-04-11

23.16%

2453%

S0.30%

46.74%

29.14%

5.13%

15.91%

Mo

Yes

3752929

S)

3749214

3747843

3747563

3744779

3744412

3747843

3747563

3744773

3744412

Because defects are not identified instantly, we make sure to display it as soon as
they are identified. Here, for the prediction at 46.74% we found a bug and the YES

will redirect you to the jira ticket.

48

BEFORE AFTER

COMMITS 4318 648
AVERAGE REVIEWERS (HIGHER BETTER) 1.06 117 +10 %
BEST REVIEWERS ? (HIGHER BETTER) 13.65 19.80 +45 %
LINES ADDED (LOWER BETTER) 536.65 257.84 -51%
LINES TOTAL (LOWER BETTER) 937.63 843.50 -10%
BUGGY (LOWER BETTER) 0.19 0.12 -36 %

Lot of projects at the same time
*Observer effect

49

The big question then is: does it have an impact? We did a comparison study before
and after the deployment of the tool on one project where the team didn’t grow
and other factors such as the time to release did not changed significantly as the
game was planned for many years later.

We found a 36% reduction in bug introduction rate.

We started from 19%, which is very aligned to what you can find in big open-source
systems and dropped down to 12%. It also came with some additional benefits such
as the experience of the selected reviewers and reduction in the number of lines.

While we could control from some external threats while doing this
experimentation. All the threats were not assessed. For one, a lot of initiatives are
aiming to enhance the developers experience and productivity. Enhancement to the
build-systems, new tests being written and so on.

We also have to wonder about the observer effect. Did the tool actually lead to the
reduction or the developers, knowing that a tool would be reading their code, were

49

more careful?

49

Current challenge

«Severity (aka planning)

- Type of regressions (aka planning)
«Occurrences (aka planning)

*Models per job family / cross-projects

The current challenges we are trying to assess now are to build more classifier to
further help the developers to smartly invest their time refining a code-
contribution. We are looking at predicting the severity of the potential defects, the
type of regressions: is it a crash, a gameplay bug, an online misshape? We are also
looking in predicting the number of occurrences the crash could have if introduced.

All of this are to help planning our effort. In the end, a lot of efforts must be put in
ironing the last bugs and some of them are more important than other. More
important because a lot of players experience them or because they cause a final
crash. These new classifiers will, hopefully, help us with that.

We also found that sharing models between similar projects works ok. But while we
are using cross-projects model we are currently experiencing for job-family models
that are shared across projects. The variance in metrics for the subsystems handling
sound are very different from the subsystems handling animations or physics. If this
is validated, in the coming months, we’ll be operating the same job-related models
across different projects.

50

If you are working on solving these challenges, don’ t hesitate to reach out and we
can maybe work on this together.

50

D

PATCH SUGGESTIONS

51

PATCH RECO

CLEVER: Combining Code Metrics with Clone Detection for
Just-In-Time Fault Prevention and Resolution in Large Industrial
Projects

Mathieu Nayrolles Abdelwahab Hamou-Lhadj
La Forge Research Lab, Ubisoft ECE Department, Concordia University
mathieu.nayrolles@ubisoft.com wahab.hamou-lhadj@concordia.ca

The next step to help developers, after predicting the riskiness of introducing a defect and
explaining why is to propose a code-change. These patch suggestions or automated
program repairs if done efficiently could greatly enhance developer productivity.

We have proposed our own attempt at this at MSR’18.

52

It was based on clustering project that looks like each other in terms of code but also in
terms of dependency. The relational behind this is that if two projects are using the same
dependencies, then they are likely to be opened to the same issues.

Here, in yellow are the projects while the dependencies are in blue.

53

Within the clusters, for each code change we did a clone comparison against abstracted
known bugs and proposed the fixes applied to the developer.

54

CHANGE DETECTION

T1

%
@ ,1' First Match
i

"roo.gelHugaé;:; "foo.getHuga()." *printin(“foobar”);"

“printin(*foa");"

We further refined it by having the fixes merged to the code of the developer using the

algorithms described by Fluri and al in the TSE paper | talked about earlier.

55

Code Contribution Known Bug Known Fix Proposal

match 1pdate ° apply °

=

update

delete

... insert

To give you an idea of how that works, if a given code contribution A-B-C-D-E-G matches a
known bug A’-B’-C’-D’-E’-G’-H’-I’ that was fixed by deleting E’, updating C’ and A’ and
inserting J. We take these changes and apply them to the code proposition to get A”-C”’-
B”-G”-D”-J”.

We are still using this approach, but it is not live for developer of the company to see. We
have a lot of scalability issues when comparing to all the known bug of a cluster and doing
so for all the contributions as they are submitted. Despite validations by experts we found
that the approach was yielding uncomfortable number of false-positives when we tried to
apply it company-wide. False positives, for automated program repair are extremely

worrisome as they destroy the confidence of the developers. It is likely that if the first few
code-change recommendations are of poor quality, the developers won’t come back to it.

56

PATCH RECO

On Learning Meaningful Code Changes via
Neural Machine Translation

Michele Tufano®, Jevgenija Pantiuchina’, Cody Watson®, Gabriele Bavota’, Denys Poshyvanyk*
*College of William and Mary, Williamsburg, Virginia, USA
Email: [mtufano, cawatson, denys} @cs.wm.edu
fUniversita della Svizzera italiana (USI), Lugano, Switzerland
Email: {gabrele bavota, jevgenija.pantiuchina | @usich

Abstract—Recent years have seen the rise of Deep Learning languages. surpassing that of human interpretation [67]. A
'[_)1:_' T_'-‘_'J"_ﬂ"f!"ﬁ i_'l-"lll'?':1 10 souree t“_'d'-\ R‘-‘_*a“_'h“’?“ h_*"f €X- gimilar principle applies to “translating” one piece of source

SapFix, Angelix, Hercules, Prophet, Darjeeling, ...

In the meantime, a lot of approaches have been published on this topic. One of the current
trends is to attack the problem using deep learning and more precisely machine learning
translation. A lot of significant examples from academia and industry, using deep-learning
or not, have been proposed such as SapFix, Angelix, Hercules and so on.

While these approaches are all very interesting and indeed scalable and accurate, we found
that have several flaws that prevent their adoptions; at least in video-games.

57

it ip)
do_semethingix);
f2(x)

0

-

vold f2{int x)
i
const char *p = NULL;
for (int 1 = @; str[i] != "yw@"; 1i++)
!
if (str[i] == " ")
1

p = str + 1;

¥

L
2

L

2

L

2

L

B

i break;
B

L

B

+ A p is NULL if str doesn't have a space. If str always has a

+ f/f a space then the condition {str[i] l= "\@") would be redundant
+ return p[1];

B

¥

wold f3{int a)

1
struct fred_t *p = NULL;
if (a == 1)
p = fredl; 58

To illustrate my point, let’s look at this simple example where we have a method extraction.
This diff, at the AST level would be represented by an AST transformation from A to B.

58

wold f2{int x)
et

const char *p =

for (int 1 = @;

NULL;
str[i] L= "wa'; i+

str[i] is the sep char x
== " " || str[i] == x)
=

p = str + 1;

i
+ ficheck if
+ if (str[i]
= if (str[i]
i
break;
¥
¥

PATCH RECO

ffp ds NULL if str doesn't have a space. If str always has a
/{ a space then the conditien (str[i] l= "%@') would be redundant

return p[l];

59

Then, in 2, a bug-fix is made. At the AST level, it would be a transformation from C to D.

Each ast is the ast of the code change only and not the whole file.

59

PATCH RECO

Fuzzy P

Directl Path Direct Path

© “

We now have, still at the AST level, what we named direct paths and fuzzy paths. A NMT
trained on classical code change would most likely miss the fuzzy path and when shown
AST A. In addition, current approaches only consider that a fix is one commit when, in our
dataset, we found that a lot of fixes are chains of fixes that are applied to buggy-commits.
These chains are incrementally building up to a complete fix that is performant and safe.

60

10e7 ASTs

Here you can see a small part in our 10e7 ASTs dataset were some fixes are simple A to B
and other involves a lot more work. Both direct and fuzzy paths are represented here.

// Video in the blog-post at laforge.ubisoft.com

61

ASTNode
si0s it

expression_statement

A5TNode
assignment_exprescion

What we are trying to do now, is to encode our ASTs using deep-learning encoder. The AST
are vanillas but we do add links between declaration and usage to create a graph.

63

© ’

Then, the approach would work like so where we have an AST, transform it into a graph and
embed it. Then, in the latent space our our deep-learning encoder, we can do a KNN and
find known bugs that are similar to the proposed AST. It operates somehow like a near-miss
deep-learning clone finder that only focuses on bug-introducing commit. Then, we can
follow the fix-chains we found and apply them to the proposed AST. Merging the fix-chain
recursively is still done using Fluri and al work. We hope to be able to report soon on this in
the framework of a proper scientific publication.

Current challenge

* Code embedding and abstraction
» Concept drift

The current challenges we face, and would be glad to collaborate on, w.r.t automated
program repair are code-embedding and abstraction. In more details we are experimenting
on technics to abstract and then embed code efficiently w.r.t to our use-case in computing
the similarity between a code-change and past bugs. Another challenge we face, and that,
to the best of our knowledge is faced by other approaches proposed by academia and
industry alike is concept drift. We found that fixes that were valid some years ago are not
valid anymore. Either because the language was upgraded or the platforms we target
changed.

65

CODE TO GAMEPLA

.Jportal/sections/fullscreen/portalfullscreenviewcontentlistcontainer.h

- RS-504962 - [ShopShowcase] Tagging System - Elite Uniform is missing
operator tag

- RS-501517 - [Customs][Local] Custom team names for local lobbies do
not automatically update for non-host players

- RS-504185 - [ShopShowcase] Operator Icon not cleared when moving
to a seasonal or universal weapon skin in the album fullscreen view

One other area we are investing is manual tests. It can sound a bit strange to be speaking
about manual tests at ASE but ... we are trying to automatically support our testers.
Producing video games requires a lot of manual testing. Our manual tests do more than
QA, they are also assessing the game mechanics, the playability, the engagement and a lot
of other metrics that we deeply care about.

That being said, when they test a build for potential regressions that automated tests could
have missed, it’s not easy to know on which piece of the 60-hours game they should focus

on. And 60 hours is only the solo part, then you have infinite possibility for the multiplayer

mode.

In this part of our work, we are summarizing past regressions that were introduced when
the code changed by a commit was changed prior to that commit. It works by selecting the
sentences in the jiras linked to buggy commit-regions.

For instance here, when a modification is done to a given region of
.../portal/sections/fullscreen/portalfullscreenviewcontentlistcontainer.h, we find a lot of
linked jiras. While this could be useful in itself, we go a step further with the
summarization.

67

CODE TO GAMEPLA

- RS-504962 - [ShopShowcase] Tagging System - Elite Uniform is missing
operator tag

1. Inthe fullscreen view of owned weapon skins, within the Operators
menu, scrolling from a normal weapon skin to a seasonal/universal
one will not clear the Operator icon, causing it to overlap with the
seasonal icon and text

2. When the host of a local customs lobby changes the team names
using the "ALT" key (default) all joined players will not see the newly
chosen names until they leave the game and rejoin it

Then, the jiras are summarized in a few sentences. In practice it works very well and inform
QA testers on where to focus their efforts by translating code-changes into high level
gameplay functionality that could be broken. It also helps developer to investigate potential
unforeseen coupling between their modification and functionalities they didn’t intended to
modify.

68

%7 Clever Commit

Past regressions summarizations

Provides summarization all regressions that where introduced in the files your are modifying taken from related Jira issues

C framework 'source/scimitar/graphic/common img

guimainmenubarh

8 Recommandations
Crashed when activating sound space option (display level design) in display options of the ImGui menu

Crash occured when starting a custom local match with multiple imGui_togelemainmenubar windows opened

RS-608742 - Game - scimitar::GFXDirectDisplay::DrawMesh()
RS-608738 - Game - scimitar::ImGui::PropertyGrid::AddObjectPropertyDescription()

RS-608731 - Game - scimitar::pop!

RS-608730 - Game - scimitar::PhysicsDebugViewers::HavokViewer::CreateHavokViewer()

RS-608505 - Game - scimitar::GFXTexture::IsTexture2D()

- Game - scimitar: ImGuiGraphicsManager::SyncManagedltem()

69

It’s part of the same tool as the one that shows and explains the riskiness | presented
before.

X-CHANGES PER MINUT

» Partial compilation of a file (Translation Unit)

* Macro expansion

 Parsing expanded code

* Building semantic model

» Generating intermediate code (+symbols)
* Linking it all together

» Taking intermediate code

* Making symbolic tables

* Packing it all

Because we have several changes per minute per game when we are reaching the
productions stages, we are also investigating how to optimize our Cl process. We are
particularly interested in orchestrating automated tests so the first tests ran are the one
the most likely to fail. To so, we are inserting ourselves in the classical steps of the
compilation of a cpp codebase.

71

X-CHANGES PER MINUT

» Partial compilation of a file (Translation Unit)
* Macro expansion
 Parsing expanded code
* Building semantic model
» Generate partial callgraph
- o ; o bols)
* Linking it all together
* Merge all partial callgraph
Taking ; I
Maki bolic-tabl
Packing it-al

Once the semantic model is built, we try to generate a partial callgraph that represents
what has changed w.r.t to the code to build.

72

TEST ORCHESTRATION

Compute

Test Map |

overlay
" Apply

Marked Callgraph 1

Test list

Change Map

Compute

Because we are analyzing also the test code, we are able to tag tests can reach the changed
code by using classical static analysis. What we are really after here is the static coverage of
automated tests so we can the one that cover the changes first.

73

TEST ORCHESTRATION

In the end, we can see at the method call level, what changes and which tests we should
run first. We intended to use machine learning technics to further reduce the amount of
test to be ran but our initial experimentations found that the suggested test-list is small
enough that it would not make sense to invest in re-orchestrating that list using machine
learning. Note that we still advice to run the full-test suite regardless of the static coverage
as the static coverage of automated test is far from perfect.

74

» #bugs introduced in covered code reduces ROI
* Lower ROl tests are to be scheduled last or ignored

* Very low ROl tests are to be investigated / removed /
reworked

Other ways to orchestrate the tests is based on their ROI. For us the ROI of a test is simply
the 1- the bug-introduction rate — or the amount of bug introduced over the amount of
contributions — of a code-region covered by the test. If the bug introduction rate is 0.8 or
80%, then the ROI of the test is 0.2.

75

Current challenge

« Smart / Directed bisection of failing batch
* Build explosions with libraries dependencies

« Speculative build/test batching

The challenges we currently face on Cl are mainly linked to the volume of contributions and
the time it takes to build and run the test suite of a AAA game. We face with an explosion
of build as we embrace cicd principles at all the levels — from the low level mathematical
library to the game itself — and we are force to batch contributions in the same cicd
pipeline. When a pipeline composed of dozens or more contributions fails, investigation
which contribution is the guilty one is often tricky. We can rely upon classical bisection, but
this requires yet another set of builds.

We are also interested in optimizing cicd pipelines by using speculative batching where an
automated process would select which set of libraries to build/test in addition to a set of
game-code changes to lower the number of builds while keeping a high level of confidence.
This is specifically interesting for us as libraries and game-code co-evolve at the same time
and at a high velocity.

76

BOT ASSISTED DEBUG

Another tool we have to debug game is to train bot to play the game for us and report their
findings.

77

PIXEL BASEDLE

|

screen CNN objects tree action

- And | want to illustrate them through the lens of ongoing work by my colleagues at
Ubisoft Pune, who are building a bot for automated tests on Steep

- Here you can see the agent playing in the top left, along with its input in the bottom
right, where you can see that it’s running at a lower framerate and only analyzing the
part of the screen within the 3 rectangles, because computations would be too heavy
otherwise

- | first want you to notice that there are a lot of red trees and red rocks on the screen:
this is because everything is covered in snow in Steep, which made it very difficult to
identify obstacles with classical computer vision algorithms

- So it was decided to change the textures to make it easier to detect important
objects on the screen

- In addition, here they decided to split the Al logic in two parts: first train an object
detection algorithm, which is the vision part of the Al

- Then use a decision making module that takes the detected objects as input, instead
of working directly from the game screen

- And one major reason to do so is to save computations, because when you train your
Al directly from pixels, it has to learn both a vision module *and* a decision making
module at the same time

// Video in the blog-post at laforge.ubisoft.com

78

Complex training
Large neural network
Costly GPU rendering
Partial observability
Less than ideal for...
e Ul details
e Sound

e Reward

The problem with pixel learning is that is extremely complex as it requires a lot of GPU
power. The game is rendered on the GPU and the training is done the GPU too. Also, it
does not tell the full story, the game states that could be useful to learn from could be
hidden or be very small details in the Ul.

// Video in the blog-post at laforge.ubisoft.com

79

- And while we were experimenting with a reinforcement learning prototype on For
Honor, we happened to find a weakness in the Al

- Here you can see in orange our reinforcement learning bot (let’s call it the
« SmartBot »), that was trained to fight against an existing game Al in blue

- And what you will notice is that what the SmartBot is stepping back, and by doing so
it forces the game Al to sprint forward

- And what happens is that the game Al was vulnerable during sprinting, and the
SmartBot used this weakness to safely punish it

- So after seeing this kind of result, we decided to build a fully automated test pipeline
to help discover potential weaknesses or exploits in the game Al

// Video in the blog-post at laforge.ubisoft.com

80

reward:
damage_to_opponent —damage_received

self HP=110
self _stance="top”
self_stamina=60
self_animation_id=4
target HP =65

: | s .
Environment

81

Distributed Prioritized Experience Replay
(Horgan et al. 2018)

- When we implemented this reinforcement learning loop and started training our
agent with the Deep Q-Network algorithm, we quickly realized the need to collect
data at a faster rate in order to speed up training

- To this end, we created this special map that is divided in 10 cells, each of which
hosting a unique 1v1l match

- By having multiple agents fighting in the same game instance, we can collect data
much more quickly without having to run the game multiple times

- In addition, here we were able to run the game at twice real-time to collect data even
faster

- The architecture we used is pretty close to the one you can find in a paper called
“Distributed Prioritized Experience Replay”

- We used one Python process per agent (here each red box is a unique Python
process)

- We have a single process communicating with the game, so as to minimize the
communication overhead

- All agents dump the data they collect in the same database, called the “replay
buffer”, which is used by another process to learn the weights of the neural network

- This neural network is then fed back to the agents so that their behavior improves
over time

82

Whole training report

Winrate
--=- Life Remaining
Reward

—— Match Time

All actions
distribution

% damage
done

Action tnfb:vDi\s‘tribution of the actions

i, e = = \

1st 2nd

Dodge_Back(23.5%) Attack_AoE_Special Strike Part1(17.9%)

Afttack_AoE_Special Strike_Part1(68 4%) Attack_AoE_Special_Strike_Part2 (16.0%)

3rd

Dodg

Attac

Using the findings of the bot we can debug and profile our games. For instances slow-
frames that the bot triggers can be further analyzed and the actions that the bot is taking
towards victory are recorded. Game designers can then look at the data is estimate if the
game is still fun to play and balanced. For instance, a bot achieving a 100% win-rate against
all enemy by exploiting a flaw in a new gameplay feature would be caught.

This allows us to reach new level of debugging where we are not only concerned by does it
compiles? Does pass the tests? To Did | break the game? Are the performances still ok in
gamer-like conditions?

83

We are also training cars to drive around with various behaviors and explore the driving
centric games for us.

// Video in the blog-post at laforge.ubisoft.com

84

Current challenge

* Presentation to engineers
* Mindset shift towards data driven SE
* Slow frame bucketing

Now for the challenges, in this conference we heard a lot of good points regarding ML 4 SE
and SE 4 ML where we advocate for knowledge transfers to be able to better apply
machine learning technique on software engineering activities and leverage decades of
software engineering research while building machine learning approaches.

To add to the mix of challenges, I'd argue that we also need a mindset change of software-
engineers; perhaps taught in colleges, to be able to leverage data-analytics when
developing software. | believe that ML techniques advanced enough to propose patches to
software engineers without false positive would be used in the wild.

However, we are building complex models too fast without a proper understanding of the
underlying data and how it was produced or generated. One of the telltales is building a
complex deep-learning network that takes days to be trained only to be told by the
practitioners: “I know”.

Well, if you knew, why is that bug still in the code? Could we have excluded it from the
data? Our complex models are generalizing on facts we already know and avoiding this

requires a mindset change.

It requires a mindset change from software practitioners because the data produced is

86

likely to be used to train models and for now, the raw data is rigged with normal alerts,
known bug and performances problems.

86

D

CRASHES MANAGEMENT

87

MDS5 + CRASH GRAPH

Crash Graphs: An Aggregated View of Multiple Crashes to Improve Crash Triage

Sunghun Kim
Hong Kong University of Science and Technology
Hong Kong
hunkimicse ust.hk

Abgtract—Crash reporting systems play an important role in
the overall reliability and dependability of the system helping
in identifying and debugging crashes in software systems
deploved in the field. In Microsoft for example, the Windows
Error Reporting (WER) system receives crash data from users,
classifies them, and presents crash information for developers
to fix erashes. However, most crash reporting systems deal
with crashes individually; they compare erashes individually to
classify them, which may cause misclassification. Developers

Thomas Zimmermann, Nachiappan Nagappan
Microsoft Research
Redmond, WA, USA
{tammer, nachin} @microsoft com

When WER reports a crash as a bug, it provides multiple
crash data files to developers. Then, to investigate and debug
one crash bug, developers need to download multiple data
files one by one, since crash bug reports include multiple
crash data files. This process requires non-trivial effort. This
is similar in spirit to how other crash collection systems (like
Mozilla) work [11].

In this paper, we propose Crash Graphs which capture
multinle crashes at once and provide an agereeated view of

88

Despites all our efforts in automated debugging and testing, the game still crashes from
time to time. To handle these crashes and bucket them to be assign, we are using an MD5
approach + an adapted version of crashgraphs.

In the MD5 approach we simply MD5 the last few lines of the crash stack while removing
frames that are known to be platform specific to create a specific signature. Crash graph is
a bit costlier to run but identify crashes that are very close to each other’s and should be
on the same bucket. We are using this when the unique MD5 signature does not match any
known bucket.

Faults Locations

CrashLocator: Locating Crashing Faults Based on Crash
Stacks

Rongxin Wu§. Hongyu ZhangT, Shing-Chi Cheung§, and Sunghun I(im§
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology, Hong Kong, China
{wurongxin, scc, hunkim}@cse.ust.hk

TMi crosoft Research
Beijing 100080, China

honzhang@microsoft.com
ABSTRACT crashed modules) at the time of crash, cluster similar crash re
Software crash is common. When a crash oceurs, software devel- tha are likely caused lT. the same fault into]'“L:k"‘l' { FIES)
Opers can receive a report upon user permission. A crash report and present the crash information to developers for de g

tviically includes a call stack at the time of crash. An important - IV TR SO PRSOROPRR Sil (, T- S L

We are also using known approaches to locate the faults based on the crash stacks.

89

Crash Prevention

» Auto-ticket reopening

* Engines are forked and tweaked for different games

* Engines are not modular, all is forked and diverges

« Able to warn / suggest patch if a forked version of
the engine is able to crashin the same way with
AST/CFG comparisons

To prevent crash from occurring or re-occurring, we must handle the diversity of our game

engines. Game engines are not modular piece of software and, while the core stays stable,

the upper layers and often branched and tweaks for a game specific intent. We are working
on identifying, using the AST and CFG of a fault identified by the crash stack on one game if
other games could crash the same way.

90

Current challenge

* Platforms multiplications

« Identify / distribute fixes that are applicable to other
flavors of the engine

The challenges related to the crash management are mainly due to the multiplications of
platforms that could crash as we have to create and maintain code for each and every one
of them. Decoding the callstack is, of course, not standard across platforms and
specifications not always explicit. We are still investigating the perfect way to handle
crashes when confronted with so many platforms, games and players in order to create
buckets of crash that are automatically triaged and easily addressable by dev teams.

We also looking into ways of tackling our internal code-divergence and how to detect and
apply fixes from hard forks into the original branch.

91

Where to learn more

» SIGGRAPH18-19
« SEMLAM9

- GDC19

« CPPCON"18

* MSR'18

* Come find me today

« ASE'207;)

92

https://github.com/MathieuNlIs/clever-challenge

94

| also take the opportunity to do some self-promotion and tell you that we are hiring
exceptional candidates because, | can see on the right, one of our character is swimming on
land, so there’s still work to be done. We are looking for software engineers with data
science experience to refines our models.

We are also aggressively looking for software engineers that can help us operate all of
these models and approaches in a micro-services environment and build the future of
automated debug & profiling at scale. We pay for you to relocate in Montreal, Canada and
you get to play with what | presented today applied to un-released titles.

Techs:

AST, CFG, Patterns, Smells, SW Metrics, ML, RL
Python, Go, C#, C++, R, WPF, Vue

Docker, K8s, DevOPS, Git, Perforce

Redis, Cassanda, Mysql, Nginx

Scikit Learn, Tensorflow, NLP

We are also looking for trainees from academia that what to test their ideas on real-dataset
and professors to build new long-lasting collaborations.

94

// Video in the blog-post at laforge.ubisoft.com

94

UBISOFT

LAFORSE

$% TECHNOLOGY GROUP

LAFORGE.UBISOFT.COM
@MATHIEUNLS

More information about laforge at lagorge.ubisoft.com and ubisoft at
montreal.ubisoft.com/en/.

You can find me on twitter @mathieunls where | tweet about our work and software
engineering research in general.

95

