
Automated Debug & Profiling
of AAA Games

Thanks Thomas and the ASE committee for the opportunity to present what we do 
in such a prestigious conference.

In today’s talk, l’ll first present what AAA videos games are and, roughly, how they 
are built. Then, we’ll embark on how we are leveraging recent research – and try to 
contribute ourselves – on various level of our debugging and profiling pipeline. 

At each stage, such as bug prevention or tests-recommendations, I’ll show which 
papers inspired us and how we had to tweak the original ideas, so it applies to 
video-games.  
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M O D E R N  
A A A  G A M E S

When we talk about games, there are two kind of perceptions, people who think 
about the first Formula 1 and people who are playing current gen games. So, we are 
all on the same page, here’s a video of the kind of games Ubisoft produces.

Ubisoft produces large open-worlds where they are no limit to the explorations and 
players are free to do whatever they desire in this simulated environment.

// Video in the blog-post at laforge.ubisoft.com
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+ A CLEAR FANTASY (PLAYER’S ROLE & CONTEXT)

CONSISTENT AND BELIEVABLE WORLDS  

PLAYERS IN THE WORLD

PLAYERS CAN BE
AGENTS OF CHANGE

WORLD

STORIES

SYSTEMS
GAMEPLAYS

CHARACTERS

THE PLAYER IN THE WORLD

AAA GAMES

UBISOFT IN THE WORLD

~16k EMPLOYEES

20 + Offices

TECH GROUP / LA FORGE

TECH ARCHITECT / ARS

DEBUG & PROFILE AAA GAMES

Ubisoft produces AAA games and have around 16 thousand employees scattered 
across 20 offices. 

For myself, I wear two hats at Ubisoft. On one hand, I am a technical architect for 
the technology group where I lead the devs related to debug and profiling at the 
scale of the compagnie. On the other hand, I am a research scientist for La Forge 
(Ubisoft Research Lab) where I lead the research roadmap on Software Engineering 
& Productivity. 
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PLAYERS
ENGAGE THEM ON THE LONG TERM

DEV TEAMS
CLARIFY THE CREATIVE MINDSET

BUSINESS STRATEGY
REACH OUR OBJECTIVES AS A COMPANYMAKING AAA GAMES
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BREAKTHROUGH

FROM IDEA TO COMPLETION

From idea to completion, we first begin the creation of a video game by the 
breakthrough phase where very few people are involved. Usually, all the different 
skillsets to make a video games are present: creatives, animators, devs, artists and 
sounds engineers.
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CONCEPTION

BREAKTHROUGH

FROM IDEA TO COMPLETION

Then, we engage the conception phase where we ramp up peoples and skills to 
produce the game. They must validate that the game is indeed fun to play by 
exercising some of the game mechanics. 
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A CLEAR ROLE, 
A FASCINATING PLACE, 

A CALL TO ADVENTUREPREPRODUCTION

CONCEPTION

BREAKTHROUGH

FROM IDEA TO COMPLETION

In preproduction, the teams are scale up again in order to push further the 
exploration of the creative ideas.

7



A CLEAR ROLE, 
A FASCINATING PLACE, 

A CALL TO ADVENTURE
LOGIC SYSTEMS, 

DIFFERENT PLAYSTYLES,
PLENTY OF SOLUTIONS 

PREPRODUCTION

CONCEPTION

BREAKTHROUGH

FROM IDEA TO COMPLETION

PRODUCTION

Finally, in production, teams are reaching max capacities. Producing a AAA games 
take hundreds of people.
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WORLD SIMULATION

FROM IDEA TO COMPLETION

It takes so many people because we are, in the end, building a world simulation, where we 
have to simulate the vegetation, the animals, the weather, the architecture, the economy, 
religion, crime, politic, gameplay, characters and then, and top of it all, the stories.

The simulation is not accurate because the game have to be fun to play – if I can 
only sprint for 15 seconds as I my current shape would allow – it won’t be so fun. So 
it’s a fun world-simulations. It can, in some context be even more challenging to 
build than an accurate one as you have to be creative about the laws of nature and 
physics you want to modify. 
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X00K CODE FILES

HUNDREDS OF PEOPLE 

MILLIONS OF PLAYER

X0K COMMITS

STATS PER GAME

XXM$ OF BUDGET

In the end, a AAA game is hundreds of thousands of files, tens of thousands of 
commits, hundreds of people and millions of players. It takes tens of millions of 
dollars to produce. You can think of AAA games as the blockbusters of the video 
game industry. 
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C O M P L E T E  F R A M E

http://www.adriancourreges.com/blog/2015/03/10/deus-ex-human-revolution-graphics-study/

Let’s get a technical about what’s happening on screen when you play. Here’s a 
complete frame rendered by a game.
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N O R M A L  M A P  1 0 %

http://www.adriancourreges.com/blog/2015/03/10/deus-ex-human-revolution-graphics-study/

To make it there, there are a lot of steps. First, you load the map. Here’s what it 
looks like at 10%.
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N O R M A L  M A P  4 0 %

http://www.adriancourreges.com/blog/2015/03/10/deus-ex-human-revolution-graphics-study/

40%
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N O R M A L  M A P  1 0 0 %

http://www.adriancourreges.com/blog/2015/03/10/deus-ex-human-revolution-graphics-study/

Then 100%
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S H A D O W S

http://www.adriancourreges.com/blog/2015/03/10/deus-ex-human-revolution-graphics-study/

We carry on by loading the shadows,
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O C C L U S I O N S

http://www.adriancourreges.com/blog/2015/03/10/deus-ex-human-revolution-graphics-study/

Computing the occlusions,
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L I G H T S

http://www.adriancourreges.com/blog/2015/03/10/deus-ex-human-revolution-graphics-study/

Lights,
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T E X T U R E S

http://www.adriancourreges.com/blog/2015/03/10/deus-ex-human-revolution-graphics-study/

And finally, we load the textures. 

This is very expedited and a few dozens additional steps are required in reality. 
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RENDERING

• 60fps ≈ 16 milliseconds per frame
• 30fps ≈ 33 milliseconds per frame
• No gameplay mechanics / physics / online / … 

So all of this to render one unique frame. If you are playing on PC, an acceptable frame rate 
– or the number of frame you want to be displaying per second – is 60 fps. On console it’s 
30 fps. 

It means you have to be able to output a frame every 16 ms on PC and every 33 ms
on console. It’s already challenging but, in addition of the rendering, you still didn’t 
do any gameplay mechanics / physics computations / online calls and everything 
that makes the game.
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PIPELINE

PS4
XBOX
PC
WII
…

On the pipeline side of things, we could think that a bunch of devs are writing tons 
of cpp and we compile it for our different platforms and done, you got a game. It 
used to be somewhat this way, but with the advent of modern AAA games and 
games as a service, where the games are receiving a lot of updates after lunch, we 
had to adapt. 
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PIPELINE

CODE

First, CPP progs are writing cpp that is saved into a perforce repository
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PIPELINE

CODE SOUND DATA

But to make a game, you also need sound and data.
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PIPELINE

CODE SOUND DATA

This sound and data assets are produced by sound engineers, animators and artists. 
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PIPELINE

CODE SOUND DATA

C_XXXXX_S_XXXXX_D_XXXXX

For us, a game version is not your typical semantic versioning but a combination of 
versions from code, data, and sound. 
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PIPELINE

CODE SOUND DATA

Artists, sound engineers and animators require tools to be able to perform their 
work. We buy some of them and we make the ones that are custom to our games 
ourselves. Most of these tools are coded in csharp and versioned in our 
repositories. 
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PIPELINE

CODE SOUND DATA

These tools are then distributed to artists, sound engineers and animators 
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PIPELINE

CODE SOUND DATA

Games now are online and require a server to run. A little known fact is that most of 
the code between the server and the client is actually the same because you want 
to make sure you are running the exact same physics engine on both sides. 
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PIPELINE

CODE SOUND DATA

CODE

And … it’s not done yet, games as a service are supported by a lot of extra-
functionalities such as friends lists, user generated content, achievements, loots 
and more that have to be created by yet another breed of programmers. These 
programmers are online programmers and create web-services that supports the 
game.
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CREATION LOOP

ReviewCode Base 
Updated

Change Visible 
to Others

HUMAN 
Suggests Patch

CI/CDCode Change 
Created

CI/CD

CI/CD

PS4

PC

XBOX

SOUND

DATA

All of this is supported by a classic contribution pipeline.
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CREATION LOOP

ReviewCode Base 
Updated

Change Visible 
to Others

HUMAN 
Suggests Patch

CI/CDCode Change 
Created

CI/CD

CI/CD

PS4

PC

XBOX

SOUND

DATA

In which we try to distillate and adapt recent research ideas published in various SE 
conferences such as ASE, ISCE, ICSME, ICPC, MSR, SANER, …
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COLLABS

Before we go on, I want to emphasize that this is not a one man show and what will be 
presented today is the work of many teams internally at LaForge and the Technology 
Group. We are also actively contributing with several universities on open research subject.

Another collaboration we have is with the Mozilla Foundation. With them, we are 
exchanging code, ideas and skills so we can build a better developer experiences at 
both companies. 
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PLAYERS
ENGAGE THEM ON THE LONG TERM

DEV TEAMS
CLARIFY THE CREATIVE MINDSET

BUSINESS STRATEGY
REACH OUR OBJECTIVES AS A COMPANYBUG INTRO. PREVENTION
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DEBUG

A lot of talks during this conference have explained before what SZZ is and how it 
works, let’s dive into it for the last time this week…
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DEBUG
Fixes

Fixes

Fixes

Fixes

During the software creation process, commits are created, bugs are found and 
fixed. When a bug is fixed, usually, the developer usually describes it in the commit-
message. Using NLP, we can then categorize the commit as a fix-commit and 
perform a blame operation on it to discover the bug introducing commit. 

One of the first modification we’ve done to the algorithm is that we do not rely on 
NLP to say if a given commit is a fix-commit. See, we are using JIRA as a ticket 
management system and it is mandatory and enforced to link your commits to the 
bugs you are fixing. There’s no guessing we know what the type of the modification 
is: maintenance, preventive maintenance, features, chore and so on. Of course, the 
JIRAs could be misclassified, and they sometime are, but overall, we achieve a 
higher level of confidence this way. 
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DEBUG

Another paper that influences us a lot is this one by Fluri et al published more than 
12 years ago in TSE. This paper describes how to extract fine-grained changes from 
two ASTs.
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DEBUG

The way it works is that is by comparing AST node by their values, of course, but 
also the similarity of their subtrees. We use this at a lot of places in our pipelines 
but, one of them is right here when we try to understand bug introducing changes. 
We analyze the changes to be able to say, we a higher degree of certainty than 
using git blame only, that a commit did introduced a defect. 
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DEBUG

http://tree-sitter.github.io/tree-sitter/

To extract ASTs from code-changes we use tree-sitter, an open-source library, that 
handles a lot of languages including cpp, csharp, typescript, python and more. We 
did a few contributions to it and our collaborators at Mozilla significantly enhanced 
the cpp support. 
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DEBUG

A classical use-case of detecting bug-introducing commit, regardless of the 
technique, is to build a classifier that can detect them. The field of research when 
we try to predict them at the commit-level, in opposition to release level, is just-in-
time defect introduction prediction. One of the papers that we, and a lot of others, 
are guided by is this one by Yasutaka et al.
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CHANGE / PROCESS METRICS

- NS
- ND
- NF
- Entropy
- LA
- LD
- LT

- NDEV
- AGE
- NUC
- EXP
- REXP
- SEXP

To build the classifier we mine and then use metrics that describe the bug-
introducing commits. Classical metrics that are described in this paper include 
number of systems, number of directories, number of files, entropy of the changes, 
line added, line deleted, line total, number of devs that touched the files, age of the 
files, unique changes, experience, recent experience and, subsystem experience. 
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CHANGE / PROCESS METRICS

- ReEXP
- ReREXP
- ReSEXP
- ReEXPAsDev
- ReREXPAsDev
- ReSEXPAsDev
- File Stability
- SS Stability
- TTMinor
- TTMajor

- TSinceMinor
- TSinceMajor
- TSinceCodeFreeze
- TimeOfDay
- DiffAllocOnStack
- DiffAlocOnHeap
- DiffCondAlloc
- DiffLoopAlloc

We experimented a lot with this, across dozens of AAA games and dozens of 
internal tools and found out that a lot of other metrics are yielding significant 
added accuracy. 

For instance, the experiences of the assigned reviewer as reviewer and as developer 
weight a lot. We also have the file stability, the subsystem stability, the times since 
and to the last and next minor and majors’ releases date. We are also looking at the 
allocation done on the heap, and the stack. We also do that on loops and behind 
conditional branches. 

We compute all of this metrics based on the fine-grained changes mined on the AST 
using visitors that compute, or estimate in the case of allocations, the values of the 
metrics.

Then, we train a classifier on this. You can do linear regression, trees or boosted 
trees or even go deep-learning on this. Currently, we are using xGBoost.
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Explainability

This paper, published at NIPS introduced the SHAP values and changes the game for 
us. SHAP values gives an unified approach to interpreting a model. In other words, 
for each prediction, you can have the weight of each metric and see how it impacts 
a given prediction.
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Potential

42

Explainability

We built a tool around the classifier and the SHAP values that developers see when 
they are preparing their commit; before the commit is sent to the code repository. 
In this tool, we see all the feature and their weight, either good or bad, towards the 
riskiness of introducing a new defect shown in the top-left corner. 
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Potential

43

Explainability

Then, within the tool, developers can tweak their commits by selecting suggested 
reviewers. The suggestions are based on the amount of contributions, or code 
ownership, of the region of code modified by the commit at hand. We also offer 
simulations that modifies the number of lines of code, the complexity and so on. At 
each simulation, the classifier re-classifies the commit as if the simulations were 
real and gives a feedback, in form of arrows, to the developers so they know how 
their simulation impacted the riskiness.
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Potential

44

Traceability

Another aspect that we found to be of crucial importance when applying this 
research in an industrial setting is traceability. In addition to be able to explain a 
single prediction, you need to be able to see how the classifications are performing 
over time. We built reporting for this that are accessible to anyone. One of them 
show the actual bug introduction rate for a given project, in red, and the predicted 
bug introduction rate in blue.

At the beginning, the lines are following each other very closely but we can see a 
big difference at the end. This difference is explained by the fact that the bugs are 
there, they were introduced but they are not found yet. 
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Potential

45

Traceability

We can be sure of this by doing classification for long enough. As you can see, the 
prediction and the reality lines are following each other in the long run.
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Potential

46

Traceability

Still, on traceability, at the commit level, when we classify a commit to be a bug-fix 
or a bug introducing commit, we built a commit-history graph that developers can 
explore to be reassured in the classifications. Here, we focus on a given commit and 
all the commits that modified it afterwards. We also see the jiras that these 
commits are linked to.
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Potential

47

Traceability

We also found that interpreting the riskiness of a commit to introduce a defect was 
not trivial for our engineers and managers. In our reporting, we can see, over-time 
the actual performances of each range of prediction. Here, we have a 36% effective 
bug ratio or true positives when the riskiness is between 30% and 40%. Above 60% 
the true-positive rate is 100%.
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Potential

48

Traceability

Because defects are not identified instantly, we make sure to display it as soon as 
they are identified. Here, for the prediction at 46.74% we found a bug and the YES 
will redirect you to the jira ticket.
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Potential

49

Does it have an impact?

BEFORE AFTER DIFF
COMMITS 4318 648

AVERAGE REVIEWERS (HIGHER BETTER) 1.06 1.17 +10 %
BEST REVIEWERS ? (HIGHER BETTER) 13.65 19.80 +45 %

LINES ADDED (LOWER BETTER) 536.65 257.84 -51 %
LINES TOTAL (LOWER BETTER) 937.63 843.50 -10%

BUGGY (LOWER BETTER) 0.19 0.12 -36 %

•Lot of projects at the same time
•Observer effect

The big question then is: does it have an impact? We did a comparison study before 
and after the deployment of the tool on one project where the team didn’t grow 
and other factors such as the time to release did not changed significantly as the 
game was planned for many years later. 

We found a 36% reduction in bug introduction rate. 

We started from 19%, which is very aligned to what you can find in big open-source 
systems and dropped down to 12%. It also came with some additional benefits such 
as the experience of the selected reviewers and reduction in the number of lines.

While we could control from some external threats while doing this 
experimentation. All the threats were not assessed. For one, a lot of initiatives are 
aiming to enhance the developers experience and productivity. Enhancement to the 
build-systems, new tests being written and so on.

We also have to wonder about the observer effect. Did the tool actually lead to the 
reduction or the developers, knowing that a tool would be reading their code, were 
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more careful? 
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Potential

50

•Severity (aka planning)
•Type of regressions (aka planning)
•Occurrences (aka planning)
•Models per job family / cross-projects

Current challenges

The current challenges we are trying to assess now are to build more classifier to 
further help the developers to smartly invest their time refining a code-
contribution. We are looking at predicting the severity of the potential defects, the 
type of regressions: is it a crash, a gameplay bug, an online misshape? We are also 
looking in predicting the number of occurrences the crash could have if introduced. 

All of this are to help planning our effort. In the end, a lot of efforts must be put in 
ironing the last bugs and some of them are more important than other. More 
important because a lot of players experience them or because they cause a final 
crash. These new classifiers will, hopefully, help us with that. 

We also found that sharing models between similar projects works ok. But while we 
are using cross-projects model we are currently experiencing for job-family models 
that are shared across projects. The variance in metrics for the subsystems handling 
sound are very different from the subsystems handling animations or physics. If this 
is validated, in the coming months, we’ll be operating the same job-related models 
across different projects.
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If you are working on solving these challenges, don’ t hesitate to reach out and we 
can maybe work on this together. 
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PLAYERS
ENGAGE THEM ON THE LONG TERM

DEV TEAMS
CLARIFY THE CREATIVE MINDSET

BUSINESS STRATEGY
REACH OUR OBJECTIVES AS A COMPANYPATCH SUGGESTIONS
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PATCH RECO

The next step to help developers, after predicting the riskiness of introducing a defect and 
explaining why is to propose a code-change. These patch suggestions or automated 
program repairs if done efficiently could greatly enhance developer productivity.

We have proposed our own attempt at this at MSR’18. 
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It was based on clustering project that looks like each other in terms of code but also in 
terms of dependency. The relational behind this is that if two projects are using the same 
dependencies, then they are likely to be opened to the same issues. 

Here, in yellow are the projects while the dependencies are in blue.
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Within the clusters, for each code change we did a clone comparison against abstracted 
known bugs and proposed the fixes applied to the developer.
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CHANGE DETECTION

We further refined it by having the fixes  merged to the code of the developer using the 
algorithms described by Fluri and al in the TSE paper I talked about earlier.
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To give you an idea of how that works, if a given code contribution A-B-C-D-E-G matches a 
known bug A’-B’-C’-D’-E’-G’-H’-I’ that was fixed by deleting E’, updating C’ and A’ and 
inserting J’. We take these changes and apply them to the code proposition to get A’’-C’’-
B’’-G’’-D’’-J’’.

We are still using this approach, but it is not live for developer of the company to see. We 
have a lot of scalability issues when comparing to all the known bug of a cluster and doing 
so for all the contributions as they are submitted. Despite validations by experts we found 
that the approach was yielding uncomfortable number of false-positives when we tried to 
apply it company-wide. False positives, for automated program repair are extremely 
worrisome as they destroy the confidence of the developers. It is likely that if the first few 
code-change recommendations are of poor quality, the developers won’t come back to it.
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PATCH RECO

SapFix, Angelix, Hercules, Prophet, Darjeeling, …

In the meantime, a lot of approaches have been published on this topic. One of the current 
trends is to attack the problem using deep learning and more precisely machine learning 
translation. A lot of significant examples from academia and industry, using deep-learning 
or not, have been proposed such as SapFix, Angelix, Hercules and so on.

While these approaches are all very interesting and indeed scalable and accurate, we found 
that have several flaws that prevent their adoptions; at least in video-games.
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58

APR

AST A

AST B

To illustrate my point, let’s look at this simple example where we have a method extraction. 
This diff, at the AST level would be represented by an AST transformation from A to B.
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AST C

AST D

PATCH RECO

Then, in f2, a bug-fix is made. At the AST level, it would be a transformation from C to D. 
Each ast is the ast of the code change only and not the whole file.
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60

AST C

AST D

AST A

AST B

Fuzzy Path
Direct PathDirect Path

PATCH RECO

We now have, still at the AST level, what we named direct paths and fuzzy paths. A NMT 
trained on classical code change would most likely miss the fuzzy path and when shown 
AST A. In addition, current approaches only consider that a fix is one commit when, in our 
dataset, we found that a lot of fixes are chains of fixes that are applied to buggy-commits. 
These chains are incrementally building up to a complete fix that is performant and safe. 
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61

10e7 AST Comparisons to do per code change10e7 ASTs

Here you can see a small part in our 10e7 ASTs dataset were some fixes are simple A to B 
and other involves a lot more work. Both direct and fuzzy paths are represented here.

// Video in the blog-post at laforge.ubisoft.com
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63

ENCODING

What we are trying to do now, is to encode our ASTs using deep-learning encoder. The AST 
are vanillas but we do add links between declaration and usage to create a graph.
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AST N GRAPH EMBED

KNNFOLLOWMERGE

TARGETED FLOW

Then, the approach would work like so where we have an AST, transform it into a graph and 
embed it. Then, in the latent space our our deep-learning encoder, we can do a KNN and 
find known bugs that are similar to the proposed AST. It operates somehow like a near-miss 
deep-learning clone finder that only focuses on bug-introducing commit. Then, we can 
follow the fix-chains we found and apply them to the proposed AST. Merging the fix-chain 
recursively is still done using Fluri and al work. We hope to be able to report soon on this in 
the framework of a proper scientific publication.
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Potential

65

Current challenges

• Code embedding and abstraction
• Concept drift

The current challenges we face, and would be glad to collaborate on, w.r.t automated 
program repair are code-embedding and abstraction. In more details we are experimenting 
on technics to abstract and then embed code efficiently w.r.t to our use-case in computing 
the similarity between a code-change and past bugs. Another challenge we face, and that, 
to the best of our knowledge is faced by other approaches proposed by academia and 
industry alike is concept drift. We found that fixes that were valid some years ago are not 
valid anymore. Either because the language was upgraded or the platforms we target 
changed.
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PLAYERS
ENGAGE THEM ON THE LONG TERM

DEV TEAMS
CLARIFY THE CREATIVE MINDSET

BUSINESS STRATEGY
REACH OUR OBJECTIVES AS A COMPANYMANUAL TESTS
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…/portal/sections/fullscreen/portalfullscreenviewcontentlistcontainer.h

- RS-504962 - [ShopShowcase] Tagging System - Elite Uniform is missing 
operator tag 

- RS-501517 - [Customs][Local] Custom team names for local lobbies do 
not automatically update for non-host players 

- RS-504185 - [ShopShowcase] Operator Icon not cleared when moving 
to a seasonal or universal weapon skin in the album fullscreen view

- …
- …

67

CODE TO GAMEPLAY

One other area we are investing is manual tests. It can sound a bit strange to be speaking 
about manual tests at ASE but … we are trying to automatically support our testers. 
Producing video games requires a lot of manual testing. Our manual tests do more than 
QA, they are also assessing the game mechanics, the playability, the engagement and a lot 
of other metrics that we deeply care about.

That being said, when they test a build for potential regressions that automated tests could 
have missed, it’s not easy to know on which piece of the 60-hours game they should focus 
on. And 60 hours is only the solo part, then you have infinite possibility for the multiplayer 
mode. 

In this part of our work, we are summarizing past regressions that were introduced when 
the code changed by a commit was changed prior to that commit. It works by selecting the 
sentences in the jiras linked to buggy commit-regions.

For instance here, when a modification is done to a given region of 
…/portal/sections/fullscreen/portalfullscreenviewcontentlistcontainer.h, we find a lot of 
linked jiras. While this could be useful in itself, we go a step further with the 
summarization. 
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- RS-504962 - [ShopShowcase] Tagging System - Elite Uniform is missing 
operator tag 

- …
- …

1. In the fullscreen view of owned weapon skins, within the Operators 
menu, scrolling from a normal weapon skin to a seasonal/universal 
one will not clear the Operator icon, causing it to overlap with the 
seasonal icon and text 

2. When the host of a local customs lobby changes the team names 
using the "ALT" key (default) all joined players will not see the newly 
chosen names until they leave the game and rejoin it 68

CODE TO GAMEPLAY

Then, the jiras are summarized in a few sentences. In practice it works very well and inform 
QA testers on where to focus their efforts by translating code-changes into high level 
gameplay functionality that could be broken. It also helps developer to investigate potential 
unforeseen coupling between their modification and functionalities they didn’t intended to 
modify.
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Potential

69

CODE TO GAMEPLAY

It’s part of the same tool as the one that shows and explains the riskiness I presented 
before. 
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PLAYERS
ENGAGE THEM ON THE LONG TERM

DEV TEAMS
CLARIFY THE CREATIVE MINDSET

BUSINESS STRATEGY
REACH OUR OBJECTIVES AS A COMPANY CI
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Potential

71

X-CHANGES PER MINUTE/GAME

• Partial compilation of a file (Translation Unit)
• Macro expansion 
• Parsing expanded code 
• Building semantic model 
• Generating intermediate code (+symbols)

• Linking it all together 
• Taking intermediate code 
• Making symbolic tables 
• Packing it all

Because we have several changes per minute per game when we are reaching the 
productions stages, we are also investigating how to optimize our CI process. We are 
particularly interested in orchestrating automated tests so the first tests ran are the one 
the most likely to fail. To so, we are inserting ourselves in the classical steps of the 
compilation of a cpp codebase.
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Potential
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X-CHANGES PER MINUTE/GAME

• Partial compilation of a file (Translation Unit)
• Macro expansion 
• Parsing expanded code 
• Building semantic model 
• Generate partial callgraph
• Generating intermediate code (+symbols)

• Linking it all together
• Merge all partial callgraph
• Taking intermediate code 
• Making symbolic tables 
• Packing it all

Once the semantic model is built, we try to generate a partial callgraph that represents 
what has changed w.r.t to the code to build.
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TEST ORCHESTRATION

Because we are analyzing also the test code, we are able to tag tests can reach the changed 
code by using classical static analysis. What we are really after here is the static coverage of 
automated tests so we can the one that cover the changes first. 
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TEST ORCHESTRATION

In the end, we can see at the method call level, what changes and which tests we should 
run first. We intended to use machine learning technics to further reduce the amount of 
test to be ran but our initial experimentations found that the suggested test-list is small 
enough that it would not make sense to invest in re-orchestrating that list using machine 
learning. Note that we still advice to run the full-test suite regardless of the static coverage 
as the static coverage of automated test is far from perfect.
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TESTS ROI

• #bugs introduced in covered code reduces ROI

• Lower ROI tests are to be scheduled last or ignored

• Very low  ROI tests are to be investigated / removed / 
reworked

Other ways to orchestrate the tests is based on their ROI. For us the ROI of a test is simply 
the 1- the bug-introduction rate – or the amount of bug introduced over the amount of 
contributions – of a code-region covered by the test. If the bug introduction rate is 0.8 or 
80%, then the ROI of the test is 0.2. 
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Current challenges

• Smart / Directed bisection of failing batch

• Build explosions with libraries dependencies

• Speculative build/test batching

The challenges we currently face on CI are mainly linked to the volume of contributions and 
the time it takes to build and run the test suite of a AAA game. We face with an explosion 
of build as we embrace cicd principles at all the levels – from the low level mathematical 
library to the game itself – and we are force to batch contributions in the same cicd
pipeline. When a pipeline composed of dozens or more contributions fails, investigation 
which contribution is the guilty one is often tricky. We can rely upon classical bisection, but 
this requires yet another set of builds. 

We are also interested in optimizing cicd pipelines by using speculative batching where an 
automated process would select which set of libraries to build/test in addition to a set of 
game-code changes to lower the number of builds while keeping a high level of confidence. 
This is specifically interesting for us as libraries and game-code co-evolve at the same time 
and at a high velocity. 
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PLAYERS
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BUSINESS STRATEGY
REACH OUR OBJECTIVES AS A COMPANYBOT ASSISTED DEBUG

Another tool we have to debug game is to train bot to play the game for us and report their 
findings.
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PIXEL BASED-LEARNING

screen CNN objects tree action

vision decision making

- And I want to illustrate them through the lens of ongoing work by my colleagues at 
Ubisoft Pune, who are building a bot for automated tests on Steep

- Here you can see the agent playing in the top left, along with its input in the bottom 
right, where you can see that it’s running at a lower framerate and only analyzing the 
part of the screen within the 3 rectangles, because computations would be too heavy 
otherwise

- I first want you to notice that there are a lot of red trees and red rocks on the screen: 
this is because everything is covered in snow in Steep, which made it very difficult to 
identify obstacles with classical computer vision algorithms

- So it was decided to change the textures to make it easier to detect important 
objects on the screen

- In addition, here they decided to split the AI logic in two parts: first train an object 
detection algorithm, which is the vision part of the AI

- Then use a decision making module that takes the detected objects as input, instead 
of working directly from the game screen

- And one major reason to do so is to save computations, because when you train your 
AI directly from pixels, it has to learn both a vision module *and* a decision making 
module at the same time

// Video in the blog-post at laforge.ubisoft.com
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WHT NOT LEARN FROM PIXEL

● Complex training
● Large neural network
● Costly GPU rendering
● Partial observability
● Less than ideal for…

● UI details
● Sound
● Reward

The problem with pixel learning is that is extremely complex as it requires a lot of GPU 
power. The game is rendered on the GPU and the training is done the GPU too. Also, it 
does not tell the full story, the game states that could be useful to learn from could be 
hidden or be very small details in the UI.

// Video in the blog-post at laforge.ubisoft.com
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SmartBot VS Game AI

- And while we were experimenting with a reinforcement learning prototype on For 
Honor, we happened to find a weakness in the AI

- Here you can see in orange our reinforcement learning bot (let’s call it the 
« SmartBot »), that was trained to fight against an existing game AI in blue

- And what you will notice is that what the SmartBot is stepping back, and by doing so
it forces the game AI to sprint forward

- And what happens is that the game AI was vulnerable during sprinting, and the 
SmartBot used this weakness to safely punish it

- So after seeing this kind of result, we decided to build a fully automated test pipeline 
to help discover potential weaknesses or exploits in the game AI

// Video in the blog-post at laforge.ubisoft.com
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RL STEPS

Environment

reward:
damage_to_opponent – damage_received

Agent

state

distance_to_target=3
self_HP=110
self_stance=“top”
self_stamina=60
self_animation_id=4
target_HP = 65
...

“attack_light_left”
“attack_heavy_top”
“block_top”
“dodge_back”
“guard_break”
...
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DQN with distributed experience replay

Interface
Agent

Game

Replay 
buffer

Learner

Network 
weights

AgentAgentAgentAgentAgentAgentAgent(s)

Distributed Prioritized Experience Replay
(Horgan et al. 2018)

- When we implemented this reinforcement learning loop and started training our 
agent with the Deep Q-Network algorithm, we quickly realized the need to collect 
data at a faster rate in order to speed up training

- To this end, we created this special map that is divided in 10 cells, each of which 
hosting a unique 1v1 match

- By having multiple agents fighting in the same game instance, we can collect data 
much more quickly without having to run the game multiple times

- In addition, here we were able to run the game at twice real-time to collect data even 
faster

- The architecture we used is pretty close to the one you can find in a paper called 
“Distributed Prioritized Experience Replay”

- We used one Python process per agent (here each red box is a unique Python 
process)

- We have a single process communicating with the game, so as to minimize the 
communication overhead

- All agents dump the data they collect in the same database, called the “replay 
buffer”, which is used by another process to learn the weights of the neural network

- This neural network is then fed back to the agents so that their behavior improves 
over time
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Results

Using the findings of the bot we can debug and profile our games. For instances slow-
frames that the bot triggers can be further analyzed and the actions that the bot is taking 
towards victory are recorded. Game designers can then look at the data is estimate if the 
game is still fun to play and balanced. For instance, a bot achieving a 100% win-rate against 
all enemy by exploiting a flaw in a new gameplay feature would be caught. 

This allows us to reach new level of debugging where we are not only concerned by does it 
compiles? Does pass the tests? To Did I break the game? Are the performances still ok in 
gamer-like conditions? 
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RL CARS

We are also training cars to drive around with various behaviors and explore the driving 
centric games for us.

// Video in the blog-post at laforge.ubisoft.com
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Current challenges

• Presentation to engineers
• Mindset shift towards data driven SE
• Slow frame bucketing

Now for the challenges, in this conference we heard a lot of good points regarding ML 4 SE 
and SE 4 ML where we advocate for knowledge transfers to be able to better apply 
machine learning technique on software engineering activities and leverage decades of 
software engineering research while building machine learning approaches.

To add to the mix of challenges, I’d argue that we also need a mindset change of software-
engineers; perhaps taught in colleges, to be able to leverage data-analytics when 
developing software. I believe that ML techniques advanced enough to propose patches to 
software engineers without false positive would be used in the wild.

However, we are building complex models too fast without a proper understanding of the 
underlying data and how it was produced or generated. One of the telltales is building a 
complex deep-learning network that takes days to be trained only to be told by the 
practitioners: “I know”. 

Well, if you knew, why is that bug still in the code? Could we have excluded it from the 
data? Our complex models are generalizing on facts we already know and avoiding this 
requires a mindset change. 

It requires a mindset change from software practitioners because the data produced is 
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likely to be used to train models and for now, the raw data is rigged with normal alerts, 
known bug and performances problems.

86



PLAYERS
ENGAGE THEM ON THE LONG TERM

DEV TEAMS
CLARIFY THE CREATIVE MINDSET

BUSINESS STRATEGY
REACH OUR OBJECTIVES AS A COMPANYCRASHES MANAGEMENT
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MD5 + CRASH GRAPH

Despites all our efforts in automated debugging and testing, the game still crashes from 
time to time. To handle these crashes and bucket them to be assign, we are using an MD5 
approach + an adapted version of crashgraphs.

In the MD5 approach we simply MD5 the last few lines of the crash stack while removing 
frames that are known to be platform specific to create a specific signature. Crash graph is 
a bit costlier to run but identify crashes that are very close to each other’s and should be 
on the same bucket. We are using this when the unique MD5 signature does not match any 
known bucket. 
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Faults Locations

We are also using known approaches to locate the faults based on the crash stacks.
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Crash Prevention

• Auto-ticket reopening
• Engines are forked and tweaked for different games
• Engines are not modular, all is forked and diverges
• Able to warn / suggest patch if a forked version of 

the engine is able to crash in the same way with 
AST/CFG comparisons

To prevent crash from occurring or re-occurring, we must handle the diversity of our game 
engines. Game engines are not modular piece of software and, while the core stays stable, 
the upper layers and often branched and tweaks for a game specific intent. We are working 
on identifying, using the AST and CFG of a fault identified by the crash stack on one game if 
other games could crash the same way. 
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Current challenges

• Platforms multiplications
• Identify / distribute fixes that are applicable to other 

flavors of the engine

The challenges related to the crash management are mainly due to the multiplications of 
platforms that could crash as we have to create and maintain code for each and every one 
of them. Decoding the callstack is, of course, not standard across platforms and 
specifications not always explicit. We are still investigating the perfect way to handle 
crashes when confronted with so many platforms, games and players in order to create 
buckets of crash that are automatically triaged and easily addressable by dev teams.

We also looking into ways of tackling our internal code-divergence and how to detect and 
apply fixes from hard forks into the original branch.

91



Potential

92

Where to learn more

• SIGGRAPH’18-19
• SEMLA’19
• GDC’19
• CPPCON’18
• MSR’18

• Come find me today

• ASE’20 ? ;)
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HIRING & NEW COLLABS

https://github.com/MathieuNls/clever-challenge

I also take the opportunity to do some self-promotion and tell you that we are hiring 
exceptional candidates because, I can see on the right, one of our character is swimming on 
land, so there’s still work to be done. We are looking for software engineers with data 
science experience to refines our models. 

We are also aggressively looking for software engineers that can help us operate all of 
these models and approaches in a micro-services environment and build the future of 
automated debug & profiling at scale. We pay for you to relocate in Montreal, Canada and 
you get to play with what I presented today applied to un-released titles.

Techs:
• AST, CFG, Patterns, Smells, SW Metrics, ML, RL
• Python, Go, C#, C++, R, WPF, Vue
• Docker, K8s, DevOPS, Git, Perforce
• Redis, Cassanda, Mysql, Nginx
• Scikit Learn, Tensorflow, NLP

We are also looking for trainees from academia that what to test their ideas on real-dataset 
and professors to build new long-lasting collaborations.
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// Video in the blog-post at laforge.ubisoft.com
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LAFORGE.UBISOFT.COM
@MATHIEUNLS

More information about laforge at lagorge.ubisoft.com and ubisoft at 
montreal.ubisoft.com/en/.

You can find me on twitter @mathieunls where I tweet about our work and software 
engineering research in general.
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